OVERVIEW

This is a Raspberry Pi GNSS HAT which supports Multi-GNSS systems: GPS, BDS, and QZSS, with advantages such as fast positioning, high accuracy, low power consumption, and so on.

It is an easy way to enable global positioning function for your Raspberry Pi.

FEATURES

- Supports Multi-GNSS systems: GPS, BDS, and QZSS
- EASY™, self track prediction technology, help quick positioning
- AlwaysLocate™, intelligent controller of periodic mode for power saving
- Supports DGPS, SBAS (WAAS/EGNOS/MSAS/GAGAN)
- UART communication baudrate: 4800~115200bps (9600bps by default)
- Onboard battery holder, supports ML1220 rechargeable battery, for preserving ephemeris information and hot starts
- 4x LEDs for indicating the module working status
- Comes with development resources and manual (examples for Raspberry Pi/Arduino/STM32)

SPECIFICATIONS

GPS SPECIFICATIONS

- Band: GPS L1(1575.42Mhz), BD2 B1 (1561.098MHz)
 - Channels: 33 tracking ch, 99 acquisition ch, 210 PRN ch
 - C/A code
 - SBA: WAAS, EGNOS, MSAS, GAGAN
- Horizontal position accuracy:
 - Autonomous: <2.5mCEP
- Time-To-First-Fix @-130dBm (EASY™ enabled):
 - Cold starts: <15s
 - Warm starts: <5s
 - Hot starts: <1s
- Sensitivity:
 - Acquisition: -148dBm
 - Tracking: -163dBm
 - Re-acquisition: -160dBm
Dynamic performance:
- Altitude (max): 18000m
- Velocity (max): 515m/s
- Acceleration (max): 4G

GENERAL SPECIFICATIONS
- Communication interface: UART
- Baudrate: 4800~115200bps (9600bps by default)
- Update rate: 1Hz (default), 10Hz (max)
- Protocols: NMEA 0183, PMTK
- Power supply voltage: 5V / 3.3V
- Operating current: 13mA
- Operating temperature: -40℃ ~ 85℃
- Dimensions: 65mm x 30.5mm
HARDWARE

1. L76B module
2. CP2102: USB TO UART converter
3. CAT24C32: EEPROM
4. RT9193-33: power manager
5. Backup mode wakeup button
6. Standby switch
7. Indicators:
 a) RXD/TXD: UART RX/TX indicator
 b) PPS: GPS status indicator
 c) PWR: power indicator
8. Raspberry Pi GPIO connector: for connecting with Raspberry Pi
9. USB TO UART port
10. GNSS antenna connector
11. Battery holder: supports ML1220 rechargeable battery, for preserving ephemeris information and hot starts
12. UART selection jumpers
 a) A: control the L76B through USB TO UART
 b) B: control the L76B through Raspberry Pi
 c) C: access Raspberry Pi through USB TO UART

Standby mode: Standby switch is used to switch Standby mode and Working mode. When module is in Standby mode, the power consumption is ultra-low. It stops satellite searching and navigating, no NMEA message outputted. Module is accessible for PMTK command or other data.
Backup mode: FORCE ON button is used to exit Backup mode. Relate to Standby mode, the consumption of Backup mode is lower. In this mode, module stop searching satellite. UART1 is inaccessible, only the backup memory (GPS messages and several user variables used for quick start) in RTC area works. The working current of Backup mode is about 7uA. The only way to wakeup from Backup mode is pull high of FORCE_ON pin.

CAT24C32: This chip is used to provide ID EEPROM for Raspberry Pi (Include supplier information, GPIO mapping and device tree information). This chip is added for better compatibility with other Raspberry Pi HATs according to the micro-HAT(uHAT) standard (https://github.com/raspberrypi/hats) of Raspberry Pi.
TESTING IN PC

HARDWARE CONNECTION

1. Mounting ML1220 battery (No included) to the battery holder in backside.
2. Connect GPS antenna. Wire A by yellow jumpers. Turn the STANDBY switch to OFF.
3. Connect L76X GPS HAT to PC by USB cable, then the PWR indicator lights on
4. Waiting for about 1s. TXD LED become to flash, which mean that data is transmitting.
5. Open serial assistant software in PC. Select the correct COM port (according to the Device Manager), set baud rate: 9600, data bit: 1, stop bit: 1

【Note】
a) Please set the module or receiver of antenna outdoor for stable GPS signal.
b) Generally, first time module should use about 35s to locate (cold starting), the locating time (first) maybe longer even failed because of environment, please be patient.
6. Download U-center software from wiki. Unzip it and install. Open U-center software, click Receiver menu, choose Port, and select the correct com port (refer to Devices Manager). Set baud rate: 9600 then click button to connect L76X GPS HAT. U-center display information after connecting.

7. If you want to check the area better, you can install GoogleEarthPluginSetup.exe tool, which allow you to choose Google Earth under View menu

【Note】The result you get from Google Earth maybe different with actual area because of dynamic drift of GPS
DEMO CODES

DOWNLOAD DEMO CODE

Find the product in Waveshare website, open the wiki and download demo code from wiki.

Resources [edit]
- User Manual
- Schematic

Demo code [edit]
- Code

Datasheet [edit]

Unzip:

<table>
<thead>
<tr>
<th>名称</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Arduino</td>
<td>2019/2/20 18:03</td>
<td>文件夹</td>
<td></td>
</tr>
<tr>
<td>RaspberryPi</td>
<td>2019/2/20 15:34</td>
<td>文件夹</td>
<td></td>
</tr>
<tr>
<td>STM32</td>
<td>2019/2/20 15:35</td>
<td>文件夹</td>
<td></td>
</tr>
</tbody>
</table>

Arduino: Arduino examples based on Arduino UNO

Raspberry Pi: Raspberry Pi examples include wiringpi and python codes

STM32: STM32 examples based on STM32F103

ARDUINO EXAMPLES

The development board used here is UNO PLUS

HARDWARE CONNECTION
Connect L76X GPS HAT to UNO PLUS by Dupont lines, short B by yellow jumpers

<table>
<thead>
<tr>
<th>L76X GPS HAT</th>
<th>Arduino</th>
</tr>
</thead>
<tbody>
<tr>
<td>5V</td>
<td>5V</td>
</tr>
<tr>
<td>GND</td>
<td>GND</td>
</tr>
<tr>
<td>RXD</td>
<td>2</td>
</tr>
<tr>
<td>TXD</td>
<td>3</td>
</tr>
</tbody>
</table>

EXPECTED RESULT

It requires about 35s to locate (first time). Open serial monitor and set baud rate to 9600. Data printed first is original data. Time: L76X GPS HAT output time.

RASPBERRY PI EXAMPLES

HARDWARE CONNECTION
Plug L76X GPS HAT to Raspberry Pi, short B by yellow jumpers

COPY EXAMPLES

Insert SD card (which has installed Raspbian image) to PC by card reader

Copy Raspberry Pi examples (the folder we download and unzip above) to BOOT directory of SD card

Exit and insert the card to Raspberry Pi, then start.

Check it: ls /boot

Copy it to /home/pi

```bash
sudo cp -r /boot/RaspberryPi/ ./
sudo chmod 777 -R RaspberryPi/
```

INSTALL LIBRARIES

Examples should be used with libraries installed

Install wiringPi:

```bash
sudo apt-get install git
git clone git://git.drogon.net/wiringPi
cd wiringPi
sudo ./build
```

Install python:

```bash
sudo apt-get install python-pip
sudo pip install RPi.GPIO```
**ENABLE SERIAL PORT**

UART interface should be used for communicating, so we need to enable hardware serial of Raspberry Pi.

```
sudo raspi-config
```

Disables login shell function and then enables hardware serial.

```
Would you like a login shell to be accessible over serial?
<Yes> <No>
```

```
Would you like the serial port hardware to be enabled?
<Yes> <No>
```

**INSTALL MINICOM**

minicom is a serial assistant tool for Linux.
Install minicom:

```bash
sudo apt-get install minicom
```

**Using minicom:**

```bash
minicom -D /dev/ttyS0 -b 9600
```

【Note】If you use Raspberry Pi zero, the serial port should be ttyAMA0, you can confirm the port by command: `ls -l /dev/serial0` The default baud rate of minicom is 115200, here we use parameters `-b 9600` to set it as 9600.

If you want to exit, you can press Ctrl + A, press X and choose Yes, then Enter.

**RUNNING CODES**

Enter RaspberryPi folder (The directory of example) and run it with commands:

**wiringPi code:**

```bash
cd ~/RaspberryPi/wiringpi
sudo ./main
```

**python code:**

```bash
cd ~/RaspberryPi/python
sudo python main.py
```

**EXPECTED RESULT**

It requires about 35s to locate (first time).
Data printed first is original data.

Time: L76X GPS HAT output time.

Code will set the module to Backup mode after running for one minute, you need to type any character and Enter to wake it up.

【Note】Even the default baud rate of L76X GPS HAT is 9600, it is changed to 115200 in code. If you find that 9600 cannot work next time, please check if it is changed.

STM32 EXAMPLE

The development board used here is Waveshare XNUCLEO-F103RB, whose chip is STM32F103RBT6. The code is based on HAL

HARDWARE CONNECTION
Wire L76X GPS HAT to STM32 board, short B by yellow jumpers. And connect USB to UART (USART1) interface of STM32 board to PC.

<table>
<thead>
<tr>
<th>L76X GPS HAT</th>
<th>STM32</th>
</tr>
</thead>
<tbody>
<tr>
<td>5V</td>
<td>5V</td>
</tr>
<tr>
<td>GND</td>
<td>GND</td>
</tr>
<tr>
<td>RXD</td>
<td>PA10</td>
</tr>
<tr>
<td>TXD</td>
<td>PA9</td>
</tr>
</tbody>
</table>

**EXPECTED RESULT**

Open serial assistant software in PC, set baud rate to 115200.

Data printed first is original data.

Time: L76X GPS HAT output time.

```
$GPGGA,091043.00,3113.4697N,9015.3668E,1,M,0.0000,0.0000,000010,279.9306*74
$GPGSV,1,1,120530,1,04,01,000010,279.9306*74
$GPGSV,2,2,120530,1,05,01,000010,279.9306*74
$GPRMC,091043.00,A,3113.46970,9015.36680,000010,279.9306*74
```

Latitude and longitude: 31.225908° N 114.400548° E
FAQ

1. **TXD didn’t flashing, data aren’t printed to serial after powering on for about 1 minute. PWR lights normally?**
   - Please check if STANDBY switch is turn to OFF. Press FORCE_ON button for about 1s and check again. If there aren’t data outputted still, check if you connect HAT correctly.

2. **Why the baud rate doesn’t change after send changing command?**
   - Please check if the current baud rate is correct. If the satellites searched are too much, the module cannot allows the baud rate to be smaller. In this case, you can use SET_NMEA_OUTPUT command to reduce the output data per time and try again.

3. **Why the locating is not accurate?**
   - The accuracy is influenced by environment. Weather reason: The humidity is every high when raining, which weaken the intensity of the GPS signal. It often raining in summer, therefore, the intensity of phone signals is weak. High building reason: high buildings shelter from satellite, make GPS intensity became weak. Area problem: Suburbs have less satellite coverage, so GPS intensity is weak in these areas. Interference problem: Sometime, signals from satellites will be interrupted by atmosphere ionosphere, buildings, forest, water and son on.

4. **Why the locating result is different with smart phone?**
   - L76X GPS HAT use satellite locating. Smart phone use AGPS, LBS, WIFI and Bluetooth locating as well except satellite. Smart phone locate much faster. And the multi-satellite system used by smart phone are different with L76X’s